
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

(SAND2020-1959 PE)

Unclassified Unlimited Release

Application Development and Readiness for Sierra:
An MPI Challenge

James Elliott

jjellio@sandia.gov

1

Unclassified Unlimited Release

Unclassified Unlimited Release

Outline

2

❑ An evolution of MPI implementations

❑ An API left behind: how developers and users pay the price
❑ Misunderstood performance gaps

An API’s ignorance leaves blood stains on the command line
❑ Well documented semantics? (Cue laughter)

Enjoy your deadlocks and correctness problems
❑ Convoluted code paths depending on compile-time/runtime parameters

All because an API refuses to provide introspection

❑ What can be done about it?

Unclassified Unlimited Release

Unclassified Unlimited Release

An evolution of MPI implementations

3

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

❑ Was well defined – but has assumption that buf is addressable

❑ Device-aware MPI allows buf to be a device, host, or ‘managed’ pointer

❑ MPI implementations *have* evolved, but not the API
✔ New runtime parameters
✔ Poorly documented implementation details (that have leaked out)
✔ Hard to vet if you are using the MPI implementation correctly

Which internal code path should you be following?
It needs to match the runtime settings!

Unclassified Unlimited Release

Unclassified Unlimited Release

An API left behind, and how developers and users pay the price

4

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

Device-aware MPI allows this buf to be a device, host, or ‘managed’ pointer

Different platforms may offer varied levels of support for each

❑ App teams develop on diverse machines … targeting a future/different machine
❑ Early MPI implementations may not be complete or performant
❑ Multi-platform compatibility requires supporting various combinations

E.g., support CUDA before MPI implementations allow device pointers (Jaguar/Titan)
❑ Customers using your application may need varied support

Convoluted code paths, exacerbated because MPI provides no way to
query where buf can point.

Perhaps,
// Which memory spaces does this implementation support?
MPI_Get_memory_spaces(…)
// The expected cost to use memory space(s)
MPI_Get_memory_space_priorities(…)

Unclassified Unlimited Release

Unclassified Unlimited Release

An API left behind, and how developers and users pay the price

5

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

New runtime parameters … blood stains on the command line
‘cuda aware’ MPI=ON|OFF (better know which state is the default!)

❑ Complexity of device-aware MPI leaks up to the user and runtime
❑ Various machines can have different default behaviors (device aware ‘on’ or ‘off’)
❑ Software adds compile time checks to control default behavior

Assumes compile-time environment matches runtime! (control your laughter!)
❑ Developers are savvy, make code paths runtime tunable (app will use device buffers or host)
 App now depends on runtime settings, and setting needs to match MPI’s runtime settings

 (What could possibly go wrong?)
❑ Users may get away with ignorance, but see unexpected performance

User sees it as: ‘I ran it this way on similar machine X, and it’s 2x slower on this machine Y’
Issue would be improved if MPI provided a way to express it’s current runtime

settings.
(In a portable way!)

Would be nice if the app could decide if it wants to be ‘device aware’ or not
API… ?

Unclassified Unlimited Release

Unclassified Unlimited Release

An API left behind, and how developers and users pay the price

6

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

Poorly documented implementation details
No memory allocations before MPI_Init!

❑ Hidden semantics introduced
❑ Location of buf may require different code paths (for the MPI implementation)

if (loc(buf) == Host) call ole_fashion(); else if (loc(buf) == …) call me_maybe();
❑ Most device-aware implementations tend to do some form of tracking allocations and caching

locations (‘loc()’ may be expensive, vendors may do more optimizations)
Calling an MPI function with a buffer it hasn’t tracked causes imminent death issues
Effect: Tracking starts with MPI_Init()
“The MPI standard does not say what a program can do before an MPI_INIT or after an MPI_FINALIZE.”

MPICH documentation for MPI_Init
❑ When problems happened, was hard to diagnose (obscure segfaults later in program execution!)

Did not always observe a crash in/near MPI_Init… instead, observed memory corruption

If MPI_Init is required to be first, then document it!
Harder problems are different code paths around MPI calls

Unclassified Unlimited Release

Unclassified Unlimited Release

An API left behind, and how developers and users pay the price

7

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

Hard to vet if you are using the MPI implementation correctly
Am I following all of the rules?

❑ Compile time and runtime parameters – is the app following the rules?
❑ Example: Observed obscure correctness problems

Appeared app was seeing ‘old’ data in MPI_Recv
Valgrind clean / compiler warnings clean (kitchen sink reported everything was fine!)

❑ Problem was one spot in the code that started passing managed memory (UVM) to MPI, but app did
not enable ‘cuda-aware’

UVM is technically addressable on both device and host (we learned it is a ‘cuda-aware feature’)
(Thanks Dave Richards and Ian Karlin!)

❑ Implemented a PMPI profiler that tested/tracked all buffers into MPI and reported locations
Quickly identified sources of problems … (fixed a single typedef)
Fixed a few other locations in Trilinos…

Codes had all previously worked, because our early-access testbed had ‘cuda-aware’ on by default
How to solve this in a portable way?

Surely, new machines will have some new rules … (good discussion point!)

Unclassified Unlimited Release

Unclassified Unlimited Release

What can be done about all of this?

8

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

Should the standard adopt some some incarnation of a memory space?
MPI_Send(const void *buf, MPI_Memory_Space location,

 int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

This talk has pointed out some naïve ways the MPI standard could potentially address
these issues, but would those techniques ever be portable?

Unclassified Unlimited Release

Unclassified Unlimited Release

What can be done about all of this?

9

Instead… or, perhaps, in addition:

Many codes wrap MPI already – is it time for a communication portability
layer, “Kokkos for MPI” ?

Comments/Thoughts/Suggestions/Snark:
jjellio@sandia.gov

